无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

Feature: Aussie scientists' global challenge to deter "overconfident" robots

Source: Xinhua| 2019-10-25 19:55:31|Editor: Li Xia
Video PlayerClose

SYDNEY, Oct. 25 (Xinhua) -- We could soon live in a world where domestic service robots perform household chores and clean up for us as we go about our daily lives. But what if your new mechanical helper decides to put your laptop in the dishwasher, places your cat in the bathtub and throws your treasured possessions into the trash?

Current vision systems being tested on "simulated" domestic robots in the cluttered, unpredictable environments of the real world, are suffering severely from what experts refer to as overconfidence -- meaning robots are unable to know when they don't know exactly what an object is.

When introduced into our day to day lives, this overconfidence poses a huge risk to people's safety and belongings, and represents a barrier for the development of autonomous robotics.

"These (models) are often trained on a specific data set, so you show it a lot of examples of different objects. But in the real world, you often encounter situations that are not part of that training data set," Niko Sünderhauf explained to Xinhua. He works as a chief investigator with the Australian Center for Robotic Vision (ACRV), headquartered at Queensland University of Technology.

"So, if you train these systems to detect 100 different objects, and then it sees one that it has not seen before, it will just overconfidently think it is one of the object types it knows, and then do something with that, and that can be damaging to the object or very unsafe."

Earlier this year, in an effort to curb these potentially cocky machines, Sünderhauf's team at the ACRV launched a world-first competition, the Robotic Vision Challenge, inviting teams from around the world to find a way to make robots less sure of themselves, and safer for the rest of us.

Sünderhauf hopes that by crowdsourcing the problem and tapping into researchers' natural competitiveness, they can overcome this monumental stumbling block of modern robotics.

The open-ended challenge has already captured global attention due to its implications regarding one of the most excitement inducing and ear-tingling concepts in robotics today -- deep learning.

While it dates back to the 1980s, deep learning "boomed" in 2012 and was hailed as a revolution in artificial intelligence, enabling robots to solve all kinds of complex problems without assistance, and behaving more like humans in the way they see, listen and think.

When applied to tasks like photo-captioning, online ad targeting, or even medical diagnosis, deep learning has proved incredibly efficient, and many organizations reliably employ these methods, with the cost of mistakes being relatively low.

However, when you introduce these intelligence systems into a physical machine which will interact with people and animals in the real world -- the stakes are decidedly higher.

"As soon as you put these systems on robots that work in the real world the consequences can be severe, so it's really important to get this part right and have this inbuilt uncertainty and caution in the system," Sünderhauf said.

To solve these issues would undoubtedly play a part in taking robotics to the next level, not just in delivering us our autonomous housekeepers, but in a range of other applications from autonomous cars and drones to smart sidewalks and robotic shop attendants.

"I think this is why this push is coming out of the robotic vision lab at the moment from our side, because we understand it's important and we understand that deep learning can do a lot of important things," Sünderhauf said.

"But you need to combine these aspects with being able to detect objects and understand them."

Since it was launched in the middle of the year, the competition has had 111 submissions from 18 teams all around the world and Sünderhauf said that while results have been promising, there is still a long way to go to where they want to be.

The competition provides participants with 200,000 realistic images of living spaces from 40 simulated indoor video sequences, including kitchens, bedrooms, bathrooms and even outdoor living areas, complete with clutter, and rich with uncertain objects.

Entrants are required to develop the best possible system of probabilistic object detection, which can accurately estimate spatial and semantic uncertainty.

Sünderhauf hopes that the ongoing nature of the challenge will motivate teams to come up with a solution which may well propel robotics research and application on a global scale.

"I think everybody's a little bit competitive and if you can compare how good your algorithm and your research is with a lot of other people around the world who are working on the same problem, it's just very inspiring," Sünderhauf said.

"It's like the Olympic Games -- when everybody competes under the same rules, and you can see who is doing the best."

In November, Sünderhauf will travel with members of his team to the annual International Conference on Intelligent Robots and Systems (IROS) held in Macao, China to present and discuss their findings so far.

As one of three leading robotics conferences in the world, IROS is a valuable opportunity for researchers to come together to compare notes, and collaborate on taking technology to the next level.

"There will be a lot of interaction and discussion around the ways forward and that will be really exciting to see what everybody thinks and really excited to see different directions," Sünderhauf said.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001385028851
国产人免费人成免费视频| 国产影片中文字幕| AV极品无码专区亚洲AV| 国产精品香港三级国产av| 精品视频福利| 国产精品理论片| 亚洲理论在线A中文字幕| 明星性猛交ⅹxxx乱大交| 丰满人妻熟妇乱又伦精品软件| 久久66久6这里只有精品7| 在教室伦流澡到高潮hgl动漫| 日韩精品三区二区三区| 亚洲精品久久久久久久久av无码| 特级毛片a级毛片免费观看网站| 国产永久免费高清在线观看| 国内在线视频一区二区三区| 国产精品香港三级国产av| 色丁狠狠桃花久久综合网| 熟熟熟熟熟熟熟熟妇50岁| 亚洲综合无码一区二区| 国产微拍一区二区三区四区| 伊大人香蕉久久网欧美| 人妻视频一区二区三区免费| 国产极品美女高潮无套在线观看| 大地影院mv在线观看高清| 欧美成人精品高清视频在线 | 女人与公狍交酡女免费| 中文字幕国产精品日韩| 欧美精品亚洲精品日韩传电影 | 厨房与子乱在线观看| 久久久久无码精品国产h动漫| 青草青草久热精品视频在线观看| 99精品久久99久久久久胖女人| 亚洲av午夜福利大精品| 亚洲最大成人网色| 亚洲欧美另类色图| 男女扒开双腿猛进入爽爽免费看| 天堂a无码a无线孕交| 久久精品国产成人| 一区二区精品久久蜜精品| 少妇人妻88久久中文字幕|