无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

Feature: Aussie scientists' global challenge to deter "overconfident" robots

Source: Xinhua| 2019-10-25 19:55:31|Editor: Li Xia
Video PlayerClose

SYDNEY, Oct. 25 (Xinhua) -- We could soon live in a world where domestic service robots perform household chores and clean up for us as we go about our daily lives. But what if your new mechanical helper decides to put your laptop in the dishwasher, places your cat in the bathtub and throws your treasured possessions into the trash?

Current vision systems being tested on "simulated" domestic robots in the cluttered, unpredictable environments of the real world, are suffering severely from what experts refer to as overconfidence -- meaning robots are unable to know when they don't know exactly what an object is.

When introduced into our day to day lives, this overconfidence poses a huge risk to people's safety and belongings, and represents a barrier for the development of autonomous robotics.

"These (models) are often trained on a specific data set, so you show it a lot of examples of different objects. But in the real world, you often encounter situations that are not part of that training data set," Niko Sünderhauf explained to Xinhua. He works as a chief investigator with the Australian Center for Robotic Vision (ACRV), headquartered at Queensland University of Technology.

"So, if you train these systems to detect 100 different objects, and then it sees one that it has not seen before, it will just overconfidently think it is one of the object types it knows, and then do something with that, and that can be damaging to the object or very unsafe."

Earlier this year, in an effort to curb these potentially cocky machines, Sünderhauf's team at the ACRV launched a world-first competition, the Robotic Vision Challenge, inviting teams from around the world to find a way to make robots less sure of themselves, and safer for the rest of us.

Sünderhauf hopes that by crowdsourcing the problem and tapping into researchers' natural competitiveness, they can overcome this monumental stumbling block of modern robotics.

The open-ended challenge has already captured global attention due to its implications regarding one of the most excitement inducing and ear-tingling concepts in robotics today -- deep learning.

While it dates back to the 1980s, deep learning "boomed" in 2012 and was hailed as a revolution in artificial intelligence, enabling robots to solve all kinds of complex problems without assistance, and behaving more like humans in the way they see, listen and think.

When applied to tasks like photo-captioning, online ad targeting, or even medical diagnosis, deep learning has proved incredibly efficient, and many organizations reliably employ these methods, with the cost of mistakes being relatively low.

However, when you introduce these intelligence systems into a physical machine which will interact with people and animals in the real world -- the stakes are decidedly higher.

"As soon as you put these systems on robots that work in the real world the consequences can be severe, so it's really important to get this part right and have this inbuilt uncertainty and caution in the system," Sünderhauf said.

To solve these issues would undoubtedly play a part in taking robotics to the next level, not just in delivering us our autonomous housekeepers, but in a range of other applications from autonomous cars and drones to smart sidewalks and robotic shop attendants.

"I think this is why this push is coming out of the robotic vision lab at the moment from our side, because we understand it's important and we understand that deep learning can do a lot of important things," Sünderhauf said.

"But you need to combine these aspects with being able to detect objects and understand them."

Since it was launched in the middle of the year, the competition has had 111 submissions from 18 teams all around the world and Sünderhauf said that while results have been promising, there is still a long way to go to where they want to be.

The competition provides participants with 200,000 realistic images of living spaces from 40 simulated indoor video sequences, including kitchens, bedrooms, bathrooms and even outdoor living areas, complete with clutter, and rich with uncertain objects.

Entrants are required to develop the best possible system of probabilistic object detection, which can accurately estimate spatial and semantic uncertainty.

Sünderhauf hopes that the ongoing nature of the challenge will motivate teams to come up with a solution which may well propel robotics research and application on a global scale.

"I think everybody's a little bit competitive and if you can compare how good your algorithm and your research is with a lot of other people around the world who are working on the same problem, it's just very inspiring," Sünderhauf said.

"It's like the Olympic Games -- when everybody competes under the same rules, and you can see who is doing the best."

In November, Sünderhauf will travel with members of his team to the annual International Conference on Intelligent Robots and Systems (IROS) held in Macao, China to present and discuss their findings so far.

As one of three leading robotics conferences in the world, IROS is a valuable opportunity for researchers to come together to compare notes, and collaborate on taking technology to the next level.

"There will be a lot of interaction and discussion around the ways forward and that will be really exciting to see what everybody thinks and really excited to see different directions," Sünderhauf said.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001385028851
亚洲一区二区三区成人在线| 99久久婷婷国产综合精品青草漫画 | 欧美日韩国产综合草草| 男阳茎进女阳道视频大全| 熟女系列丰满熟妇AV| 久久精品免费观看国产软件| 免费黄色大全一区二区三区 | 日本视频一两二两三区| 欧美色丁香| 中国亚州女人69内射少妇| 中文国产日韩欧美二视频| 中文字幕影院一区二区毛片| 国产日本一区二区三区| 人妻熟女一二三区夜夜爱| 亚洲 欧美 中文 AⅤ在线视频 | 99久久激情国产精品| 国产一区二区三区免费看视频| 国产青青草自拍视频在线播放| 国产成人精品免费视频大| 免费国产黄网站在线观看视频| 久久热这里只有精品66| 草草浮力影院| 2020极品精品国产| 91po国产在线精品免费观看| 久久久无码精品亚洲日韩蜜臀浪潮| 国产精品自拍一二三四区| 国内精品大秀视频日韩精品| 国产精品_国产精品_k频道| 国产中文字幕乱人伦在线观看 | 极品少妇被后入内射视| 日韩成人无码影院| 天天做天天欢摸夜夜摸狠狠摸 | 欧美高清狂热视频60一70| 久久中文字幕日韩精品| 久久九九有精品国产尤物| 欧美人与物ⅴideos另类| 亚洲最新地址| 午夜欧美日韩在线视频播放| 日产精品一区二区三区免费| 狠狠躁日日躁夜夜躁欧美老妇| 免费观看久久精品日本视频|