无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

China Focus: Chinese satellite tests space-based gravitational wave detection technologies

Source: Xinhua| 2019-09-20 22:04:49|Editor: huaxia
Video PlayerClose

The Taiji-1 satellite is a recently-launched Chinese satellite that was sent into orbit on Aug. 31, 2019 to conduct in-orbit experiments on the key technologies related to space-based gravitational wave detection. (Xinhua)

China's Taiji-1 satellite, sent into orbit last month, has conducted in-orbit experiments on the key technologies related to space-based gravitational wave detection and has completed its first stage tests in orbit, laying a solid foundation for future gravitational wave observation in space.

BEIJING, Sept. 20 (Xinhua) -- A recently-launched Chinese satellite has conducted in-orbit experiments on the key technologies related to space-based gravitational wave detection, the Chinese Academy of Sciences (CAS) announced on Friday.

The satellite, sent into orbit on Aug. 31, is China's first such kind of satellite, and has completed its first stage tests in orbit, laying a solid foundation for future gravitational wave observation in space, said Xiangli Bin, vice president of CAS.

"This is the first step of China's space-based gravitational wave detection. But there is still a long way to go to realize detecting gravitational waves in space. Chinese scientists will continue to contribute Chinese wisdom to the exploration and human progress," Xiangli said.

The satellite has been named Taiji-1. As a Chinese term for the "supreme ultimate," Taiji is well-known as the black and white circular symbol representing yin and yang. The pattern of Taiji also resembles a binary star system composed by objects like neutron stars or black holes.

Gravitational waves are "ripples" in space-time caused by some of the most violent and energetic processes in the universe. Albert Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity.

The strongest gravitational waves are produced by catastrophic events such as colliding black holes, supernovae, coalescing neutron stars or white dwarf stars and possibly even the remnants of gravitational radiation created by the birth of the universe itself.

The first discovery of gravitational waves by the LIGO Collaboration in 2015 has opened a new window to observe the universe and encouraged scientists worldwide to accelerate their research.

CAS has announced the research program "Taiji" that will study gravitational waves from the merging of binary black holes and other celestial bodies.

A simulated image of the recently-launched Chinese satellite Taiji-1. (Xinhua)

Unlike the LIGO research conducted from a ground-based observatory, Taiji will conduct space-based detection on the gravitational waves with lower frequencies to observe celestial bodies with greater mass or located farther away in the universe, said Wu Yueliang, chief scientist of the Taiji program and an academician of CAS.

However, the gravitational wave signals from those celestial bodies are extremely weak, posing great challenges for detection. Scientists need to break through the limit of current precise measurement and control technology, Wu said.

Taiji-1 aims to test the key technologies such as high-precision and ultra-stable laser interferometer, gravitational reference sensor, ultra-high precision drag-free control and ultra-stable and ultra-static satellite platform, according to Wu.

Taiji-1 has realized China's most accurate space laser interference measurement and the first in-orbit drag-free control technology test. It also carried out electric propulsion technology experiments, Xiangli said.

The first-stage in-orbit test showed that the accuracy of displacement measurement of the laser interferometer on Taiji-1 could reach a 100-picometer order of magnitude, equivalent to the size of an atom.

"The accuracy of the gravitational reference sensor on the satellite reached ten billionths of the magnitude of the earth's gravitational acceleration, equivalent to the acceleration produced by an ant pushing the Taiji-1 satellite," Wu explained.

The thrust resolution of the micro-thruster on the satellite reached a scale equivalent to one-ten thousandth of the weight of a sesame grain, Wu said.

However, the technological requirements for detecting gravitational waves in space are much higher, scientists say.

CAS set a three-step strategy to implement the Taiji program. It took the research team about one year to develop Taiji-1, the first satellite of the program. It is expected to launch another two satellites in the second step after 2023, and three more satellites in the third step around 2033, according to Wu.

Over the past few years, China has sent a series of space science satellites into space, including the DAMPE to search for dark matter, the world's first quantum satellite and the HXMT, China's first X-ray space telescope.

In the coming three to four years, China plans to launch new space science satellites including the Gravitational Wave Electromagnetic Counterpart All-sky Monitor (GECAM), the Advanced Space-borne Solar Observatory (ASO-S), the Einstein-Probe (EP) and the Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) to study gravitational waves, black holes, the relationship between the solar system and humanity and the origin and evolution of the universe.

KEY WORDS:
EXPLORE XINHUANET
010020070750000000000000011102121384086961
caoporn免费视频公开| 成人免费无码毛片黄网| 亚洲乱码精品一区二区| 污污视频在线免费看| 欧美日韩国产1区| 国产日产免费高清欧美一区| 在线免费播放av观看| 夫前人妻被灌醉侵犯在线| 国产小受被做到哭咬床单GV| 国产在线一区二区三区四区五区| 国内色精品视频在线网址| 亚洲香蕉av一区二区蜜桃| 日本一区二区三区在线 |观看| 天天躁日日躁狠狠很躁电影| 久久偷看各类wc女厕嘘嘘偷窃| 开心五月婷婷色婷在线| 成人无号精品一区二区三区| 天天操夜夜操| 在线a亚洲v天堂网2018| 亚洲综合网国产精品一区| 国产精品亚洲аv久久| 永久免费av无码网站直播| 久久综合色之久久综合| 东京热加勒比日韩精品| 久99久热只有精品国产15| 午夜福利偷拍国语对白| 亚洲伊人久久综合成人| 美女一区二区三区在线观看视频| 久久精品女人天堂av麻| 国产99页| 国产区二区三区在线观看| 成全影院电视剧在线观看| 中文字幕无码免费不卡视频| 公的浮之手中字1| 久久99精品久久久久久不卡| 免费人成视频在线观看网站 | 在线色国产| 色婷婷啪啪| 视频二区亚洲精品| 欧美黑人XXXX性高清版| 日韩AV午夜在线观看|