无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

 
Six tiger subspecies confirmed by genetic study
                 Source: Xinhua | 2018-10-26 05:22:35 | Editor: huaxia

A 45-day-old bengal tiger cub (Panthera Tigris Tigris), is pictured at the Wild Shelter Foundation (FURESA) in Jayaque, 40 kilometres west of San Salvador, on Jan. 31, 2017. (AFP Photo)

WASHINGTON, Oct. 25 (Xinhua) -- An international team led by Chinese researchers analyzed the complete genomes of 32 representative tiger specimens and confirmed that tigers indeed fall into six genetically distinct groups.

These six subspecies include the Bengal tiger, Amur tiger, South China tiger, Sumatran tiger, Indochinese tiger, and Malayan tiger, according to the study published on Thursday in the journal Current Biology.

Fewer than 4,000 free-ranging tigers remain in the wild. Efforts to protect these remaining tigers have also been stymied by uncertainty about whether they represent six, five or only two subspecies.

"This study is the first to reveal the tiger's natural history from a whole-genomic perspective. It provides robust, genome-wide evidence for the origin and evolution of this charismatic megafauna species," said the paper's senior author Luo Shujin with Peking University.

Luo's team and colleagues from Russia and the United States realized that genome-wide screening was also the only way to look for signals that distinct groups of tigers have undergone natural selection to adapt to the environments of the distinct geographic regions they inhabit.

Fossil evidence showed that tigers go back two to three million years, but the genomic evidence revealed that all living tigers only traced back to a time about 110,000 years ago, when tigers suffered a historic population bottleneck, according to the study.

The genomic evidence also showed that there was very little gene flow among tiger populations.

Despite the tiger's low genetic diversity, the pattern across groups is highly structured, offering evidence that these subspecies each have a unique evolutionary history.

The researchers said that's quite unique among the big cats since several other species, such as the jaguar, have shown much more evidence of intermixing across whole continents.

Tiger subspecies have distinct features, according to the study. For example, Amur tigers are large with pale orange fur, while Sumatran tigers in the Sunda Islands tend to be smaller with darker, thickly striped fur.

"In the end, we were quite amazed that, by performing a stepwise genome-wide scan, seven regions including 14 genes stood out as the potential regions subject for selection," said Luo.

The strongest signal of selection they found was in the Sumatran tiger, across a genomic region that contains the body-size-related ADH7 gene.

The researchers suggested that the Sumatran tiger might have been selected for smaller size to reduce its energy demands, allowing it to survive on the island's smaller prey animals, such as wild pigs and muntjac, a small deer.

"Tigers are not all alike," said Luo. "Tigers from Russia are evolutionarily distinct from those from India. Even tigers from Malaysia and Indonesia are different."

However, the origin of the South China tiger remained unresolved since only one specimen from captivity was used in this study since this subspecies has gone extinct in the wild.

The researchers plan to study old specimens with known origin from all over China to fill in the missing pieces of living tigers' evolutionary history.

They're also retrieving genomic information from historical specimens, including those representing the extinct Caspian, Javan, and Bali tigers.

Back to Top Close
Xinhuanet

Six tiger subspecies confirmed by genetic study

Source: Xinhua 2018-10-26 05:22:35

A 45-day-old bengal tiger cub (Panthera Tigris Tigris), is pictured at the Wild Shelter Foundation (FURESA) in Jayaque, 40 kilometres west of San Salvador, on Jan. 31, 2017. (AFP Photo)

WASHINGTON, Oct. 25 (Xinhua) -- An international team led by Chinese researchers analyzed the complete genomes of 32 representative tiger specimens and confirmed that tigers indeed fall into six genetically distinct groups.

These six subspecies include the Bengal tiger, Amur tiger, South China tiger, Sumatran tiger, Indochinese tiger, and Malayan tiger, according to the study published on Thursday in the journal Current Biology.

Fewer than 4,000 free-ranging tigers remain in the wild. Efforts to protect these remaining tigers have also been stymied by uncertainty about whether they represent six, five or only two subspecies.

"This study is the first to reveal the tiger's natural history from a whole-genomic perspective. It provides robust, genome-wide evidence for the origin and evolution of this charismatic megafauna species," said the paper's senior author Luo Shujin with Peking University.

Luo's team and colleagues from Russia and the United States realized that genome-wide screening was also the only way to look for signals that distinct groups of tigers have undergone natural selection to adapt to the environments of the distinct geographic regions they inhabit.

Fossil evidence showed that tigers go back two to three million years, but the genomic evidence revealed that all living tigers only traced back to a time about 110,000 years ago, when tigers suffered a historic population bottleneck, according to the study.

The genomic evidence also showed that there was very little gene flow among tiger populations.

Despite the tiger's low genetic diversity, the pattern across groups is highly structured, offering evidence that these subspecies each have a unique evolutionary history.

The researchers said that's quite unique among the big cats since several other species, such as the jaguar, have shown much more evidence of intermixing across whole continents.

Tiger subspecies have distinct features, according to the study. For example, Amur tigers are large with pale orange fur, while Sumatran tigers in the Sunda Islands tend to be smaller with darker, thickly striped fur.

"In the end, we were quite amazed that, by performing a stepwise genome-wide scan, seven regions including 14 genes stood out as the potential regions subject for selection," said Luo.

The strongest signal of selection they found was in the Sumatran tiger, across a genomic region that contains the body-size-related ADH7 gene.

The researchers suggested that the Sumatran tiger might have been selected for smaller size to reduce its energy demands, allowing it to survive on the island's smaller prey animals, such as wild pigs and muntjac, a small deer.

"Tigers are not all alike," said Luo. "Tigers from Russia are evolutionarily distinct from those from India. Even tigers from Malaysia and Indonesia are different."

However, the origin of the South China tiger remained unresolved since only one specimen from captivity was used in this study since this subspecies has gone extinct in the wild.

The researchers plan to study old specimens with known origin from all over China to fill in the missing pieces of living tigers' evolutionary history.

They're also retrieving genomic information from historical specimens, including those representing the extinct Caspian, Javan, and Bali tigers.

010020070750000000000000011100001375587111
55夜色66夜色国产精品| 午夜免费福利小电影| 国产视频一区二区三区四区视频| 国产爆乳乱码女大生Av| 国产一级做美女做受视频| brazzers欧美丰满| 中文字幕第一区高清AV| 国产极品嫩模在线精品| 久久亚洲av成人无码软件| 国产首页一区二区不卡| 免费人成视频在线观看免费尤物 | 久久精品国产亚洲AV香蕉吃奶| 久久亚洲综合伊人| 67194熟妇在线观看线路1| 人人妻人人做人人爽夜欢视频| 亚洲色最新高清AV网站| 一区二区三区不卡免费av| 一本大道视频精品人妻| 熟睡人妻被讨厌的公侵犯| 国产人妻人伦精品婷婷| 亚洲AV无码东方伊甸园| 亚洲av日韩av综合aⅴxxx| 亚洲日本va午夜中文字幕久久| 国产精品福利自产拍在线观看| 亚洲伊人久久综合成人| 四房播色综合久久婷婷| 国产精品无码天天爽视频| 成年av福利永久免费观看| 无码人妻一区二区三区四区av| 欧美区一区二区三区| 国产精品玩偶在线观看| 一区二区和激情视频| 精品无码成人片一区二区| 久久天天躁狠狠躁夜夜躁2o2o| 夜夜添狠狠添高潮出水| 99re8国产在线观看免费视频| 日韩一区二区+在线播放| 国产农村妇女精品一二区| 亚洲天堂av 在线| 欧美激情一区二区三区成人| 国产精品免费高清在线观看|