无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

 
Scientists suggest a new tactic for starving tumors
                 Source: Xinhua | 2018-06-26 03:31:23 | Editor: huaxia

In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

Back to Top Close
Xinhuanet

Scientists suggest a new tactic for starving tumors

Source: Xinhua 2018-06-26 03:31:23

In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

010020070750000000000000011105091372803221
亚洲2区3区4区产品乱码2021 | 91色爱欧美精品www| 亚洲成人动漫在线观看| 99久久亚洲综合精品成人网| 欧美黑人粗暴多交高潮水最多| 69精品丰满人妻无码视频a片| 真实国产乱啪福利露脸| 无码精品人妻一区二区三区98| 亚洲中文字幕人妻系列| 伊大人香蕉久久网欧美| 国产成人久久777777| 国产高清在线精品一区二区三区| 亚洲情精品中文字幕有码在线| 天堂国产一区二区三区| 国产欧美精品一区aⅴ影院| 欧美人人妻人人澡人人尤物| 欧美成人一区二区三区不卡| 国产69精品久久久久99尤物| 好看午夜一鲁一鲁一鲁| 国产成人高清亚洲综合| 国产第一区二区三区精品| 亚洲中文字幕在线精品一区| 国产亚洲欧美日韩在线观看一区 | 中文字幕一区二区三区网址| 国产av无码专区亚洲版综合| 91精品国产老熟女在线| 精品人妻无码| 涩欲国产一区二区三区四区| 精品国产91爱| 最新无码国产在线视频人与 | 狠狠躁夜夜躁人人爽天天天天| 亚洲成a人v欧美综合天堂软件| 亚洲精品国产成人99久久6| 成人午夜在线观看日韩| 色二av手机版在线| 亚洲国产精品自在在线观看| 日本成人午夜一区二区三区| 国产美女自卫慰黄网站| 国产偷窥熟女精品视频大全| 99久久久无码国产精品免费| 日韩高清亚洲日韩精品一区二区|