无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

 
Night shift may swiftly alter proteins in blood, cause diseases: study
                 Source: Xinhua | 2018-05-22 04:15:00 | Editor: huaxia

File Photo

WASHINGTON, May 21 (Xinhua) -- New research published on Monday in the Proceedings of the National Academy of Sciences revealed that staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood.

Those proteins can influence blood sugar, energy metabolism, and immune function, according to the study.

"This tells us that when we experience things like jet lag or a couple of nights of shift work, we very rapidly alter our normal physiology in a way that if sustained can be detrimental to our health," said the paper's senior author Kenneth Wright, director of the Sleep and Chronobiology Laboratory at University of Colorado Boulder.

The study is the first to examine how protein levels in human blood, also known as the plasma proteome, vary over a 24-hour period and how altered sleep and meal timing affects them.

The study also pinpointed 30 distinct proteins that, regardless of sleep and meal timing, vary depending upon what internal circadian time it is.

The findings could open the door for developing new treatments for night shift workers, who make up about 20 percent of the global workforce and are at higher risk for diabetes and cancer and also enable doctors to precisely time administration of drugs, vaccines and diagnostic tests around the circadian clock.

"If we know the proteins that the clock regulates, we can adjust timing of treatments to be in line with those proteins," said the paper's lead author Christopher Depner, a postdoctoral researcher in the university's Department of Integrative Physiology.

The researchers recruited six healthy male subjects in their 20s to spend six days, with their meals, sleep, activity and light exposure tightly controlled.

On days one and two, the men stuck to a normal schedule. Then they were gradually transitioned to a simulated night-shift work pattern, in which they had eight hour sleep opportunities during the day and stayed up all night, eating then.

Researchers drew blood every four hours and assessed levels and time-of-day-patterns of 1,129 proteins. They found 129 proteins whose patterns were thrown off by the simulated night shift.

"By the second day of the misalignment we were already starting to see proteins that normally peak during the day peaking at night and vice versa," Depner said.

One of those proteins was glucagon, which prompts the liver to push more sugar into the bloodstream. When subjects stayed awake at night, levels not only surged at night instead of day but also peaked at higher levels.

Long-term, this pattern could help explain why night-shift workers tend to have higher diabetes rates, Depner said.

The simulated night shift schedule also decreased levels of fibroblast growth factor 19, which has been shown in animal models to boost calorie-burning or energy expenditure. This fell in line with the finding that subjects burned 10 percent fewer calories per minute when their schedule was misaligned.

The researchers noted that they kept all the study subjects in dim light conditions, so that light-exposure (which can also strongly affect the circadian system) didn't influence results.

Even without the glow of electronics at night, changes in protein patterns were rapid and widespread.

"This shows that the problem is not just light at night," Wright said. "When people eat at the wrong time or are awake at the wrong time that can have consequences too."

Back to Top Close
Xinhuanet

Night shift may swiftly alter proteins in blood, cause diseases: study

Source: Xinhua 2018-05-22 04:15:00

File Photo

WASHINGTON, May 21 (Xinhua) -- New research published on Monday in the Proceedings of the National Academy of Sciences revealed that staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood.

Those proteins can influence blood sugar, energy metabolism, and immune function, according to the study.

"This tells us that when we experience things like jet lag or a couple of nights of shift work, we very rapidly alter our normal physiology in a way that if sustained can be detrimental to our health," said the paper's senior author Kenneth Wright, director of the Sleep and Chronobiology Laboratory at University of Colorado Boulder.

The study is the first to examine how protein levels in human blood, also known as the plasma proteome, vary over a 24-hour period and how altered sleep and meal timing affects them.

The study also pinpointed 30 distinct proteins that, regardless of sleep and meal timing, vary depending upon what internal circadian time it is.

The findings could open the door for developing new treatments for night shift workers, who make up about 20 percent of the global workforce and are at higher risk for diabetes and cancer and also enable doctors to precisely time administration of drugs, vaccines and diagnostic tests around the circadian clock.

"If we know the proteins that the clock regulates, we can adjust timing of treatments to be in line with those proteins," said the paper's lead author Christopher Depner, a postdoctoral researcher in the university's Department of Integrative Physiology.

The researchers recruited six healthy male subjects in their 20s to spend six days, with their meals, sleep, activity and light exposure tightly controlled.

On days one and two, the men stuck to a normal schedule. Then they were gradually transitioned to a simulated night-shift work pattern, in which they had eight hour sleep opportunities during the day and stayed up all night, eating then.

Researchers drew blood every four hours and assessed levels and time-of-day-patterns of 1,129 proteins. They found 129 proteins whose patterns were thrown off by the simulated night shift.

"By the second day of the misalignment we were already starting to see proteins that normally peak during the day peaking at night and vice versa," Depner said.

One of those proteins was glucagon, which prompts the liver to push more sugar into the bloodstream. When subjects stayed awake at night, levels not only surged at night instead of day but also peaked at higher levels.

Long-term, this pattern could help explain why night-shift workers tend to have higher diabetes rates, Depner said.

The simulated night shift schedule also decreased levels of fibroblast growth factor 19, which has been shown in animal models to boost calorie-burning or energy expenditure. This fell in line with the finding that subjects burned 10 percent fewer calories per minute when their schedule was misaligned.

The researchers noted that they kept all the study subjects in dim light conditions, so that light-exposure (which can also strongly affect the circadian system) didn't influence results.

Even without the glow of electronics at night, changes in protein patterns were rapid and widespread.

"This shows that the problem is not just light at night," Wright said. "When people eat at the wrong time or are awake at the wrong time that can have consequences too."

010020070750000000000000011100001371960141
国产福利日本一区二区三区| 久久久久青草线蕉亚洲| 久久综合狠狠综合久久| 国语自产拍在线观看hd| 狠狠色成人综合首页| 欧美巨大极度另类| 四虎女优在线视频免费看| 中文国产乱码在线人妻一区二区| 亚洲中文无码手机永久| 69天堂国产在线精品观看| 综合激情久久精品女人天堂| 日本亚洲成高清一区二区三区| 国产免费AV片在线看| 幻女free性俄罗斯毛片| 最近日本免费高清完整版| 亚洲熟妇色xxxxx欧美老妇y| 久久综合精品国产二区无码| 午夜性色福利在线观看视频| 91网站在线看| 欧美色欧美亚洲高清在线观看 | 久久免费视亚洲无码视频| 日本一区二区视频免费观看| 亚洲丝袜第一页| 在线亚洲中文精品第一页| 国产精品福利一区二区久久| 黄色大全免费看国产精品| 毛片av在线播放亚洲av网站| 日亚韩在线无码一区二区三区| 国产自产21区激情综合一区| 欧美日本在线| 久久无码喷吹高潮播放不卡| 亚洲欧美高清在线精品一区二区| 亚洲国产精品综合久久20| 玩弄放荡人妻少妇系列| 久久精品国产一区二区三 | 欧洲精品色在线观看| 亚洲18禁一区二区三区| 女同另类激情在线三区| 视频一区中文字幕亚洲| 国产首页一区二区不卡| 亚洲av综合av一区|