"/>

无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

Chinese, American scientists develop tiny gel balls to predict cancer

Source: Xinhua    2018-05-15 00:52:35

WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

Although small on a human scale, the traction plays a fundamental role in cell physiology.

"If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

"The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

This ability to quantify force in cells may be very important to cancer cell research, Wang said.

The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

"We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

"Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

Editor: Mu Xuequan
Related News
Xinhuanet

Chinese, American scientists develop tiny gel balls to predict cancer

Source: Xinhua 2018-05-15 00:52:35

WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

Although small on a human scale, the traction plays a fundamental role in cell physiology.

"If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

"The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

This ability to quantify force in cells may be very important to cancer cell research, Wang said.

The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

"We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

"Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

[Editor: huaxia]
010020070750000000000000011105091371788141
一区二区av在线免费| 国产资源精品中文字幕| 天天躁日日躁狠狠躁中文字幕| 日本欧美大码a在线观看| 亚洲国产成人久久77| 国产免费视频一区二区| 久久99久久99精品免视看国产成人| 国产精品福利自产拍在线观看| 亚洲AV日韩AV永久无码下载| 久久夜色精品国产亚av| 成人免费A级毛片无码网站入口| 无码精品久久一区二区三区| 欧美第九页| 国产综合久久99久久| 成·人免费午夜视频| 人成午夜大片免费视频77777| 亚洲精品国产自在现线最新| 在线a网站| 妞干网中文字幕| 2020久热爱精品视频在线观看| 亚洲中文字幕日产无码| 国产精品天天狠天天看| 亚洲欧美尹人综合网站| 国产成人精品男人的天堂下载| 在线亚洲综合欧美网站首页| 国产精成人品日日拍夜夜| 久久亚洲国产成人亚| 97国产成人无码精品久久久| 一级毛片网| 国产成人久久婷婷精品流白浆| 日韩精品欧美激情亚洲综合| 国产精品一区二区插插插| 依依成人影视国产精品| 国产99页| 激情伊人五月天久久综合| 久久久久亚洲波多野结衣 | 亚洲成人www| 尤物成AV人片在线观看| 99热6这里只有精品| 久久青青草原亚洲av无码| 99久久亚洲综合精品成人网|