"/>

无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

Scientists teach computers to recognize cells, using AI

Source: Xinhua    2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

Editor: yan
Related News
Xinhuanet

Scientists teach computers to recognize cells, using AI

Source: Xinhua 2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

[Editor: huaxia]
010020070750000000000000011105521371069391
97国产成人无码精品久久久| 国产精品伦人一久二久三久| 亚洲中文字幕无码专区| 中文字幕人妻无码系列第三区 | 國產尤物AV尤物在線觀看| 永久免费中文字幕av| 亚洲丰满熟女一区二区v| 久久婷婷五月综合色99啪| 亚洲国产欧美在线人成最新| 亚洲日产AV中文字幕无码偷拍| 亚洲欧美人成人让影院| 中文字幕亚洲综合久久2020| 97在线视频免费| 国产激情视频一区二区三区| 中文字幕avdvd| 国产欧美va天堂在线观看视频| 国产精品久久亚洲不卡| 97久久久人妻一区精品| 精品亚洲aⅴ在线观看| 69成人网| 日韩欧美视频一区二区三区| 一级毛片网| 久久毛片少妇高潮| 久久99国产亚洲高清观看首页| 亚洲无码高清一区| 久久精品国产亚洲AV嫖农村妇女| 熟妇女人妻丰满少妇中文字幕| 亚洲人成亚洲人成在线观看| 少妇被粗大的猛烈进出免费视频| 精品一区二区国产av| 一个人看bd高清| 久久99热精品这里久久精品| 亚洲色大成网站www应用| 日韩视频中文字幕精品偷拍| av国产剧情md精品麻豆| 亚洲精品国自产拍影院| 亚洲熟妇av日韩熟妇在线| 亚洲精品久久久久成人2007| 亚洲日本丝袜丝袜办公室| 免费网站看v片在线18禁无码| 成人白浆一区二区三区在线观看|