"/>

无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

Google takes step forward at quantum supremacy with 72-Qubit chip

Source: Xinhua    2018-03-07 07:27:57

LOS ANGELES, March 6 (Xinhua) -- Google takes a step forward in its bid to become the first company to demonstrate "quantum supremacy" with its newest 72-qubit quantum processor, which was unveiled this week at annual American Physical Society meeting here.

The chip, known as Bristlecone, is an expanded version of their previous 9-qubit linear quantum processor. Google believes that Bristlecone will be the chip that helps the internet giant to become the first company to demonstrate quantum supremacy.

"We are cautiously optimistic that quantum supremacy can be achieved with Bristlecone," Julian Kelly, a research scientist at Google's Quantum AI Lab wrote on Monday in a blog post, "and feel that learning to build and operate devices at this level of performance is an exciting challenge."

Quantum supremacy is the potential ability of quantum computing devices to solve problems that classical computers practically cannot.

"We believe the experimental demonstration of a quantum processor outperforming a supercomputer would be a watershed moment for our field, and remains one of our key objectives," said Google's blog post.

The general assumption in the industry is that it will take 49 or 50 quantum bits, or qubits, to achieve quantum supremacy, the capability of a quantum computer to outperform the largest supercomputers on certain computational tasks, a 72-qubit processor should be more than enough to achieve such a milestone.

However, a quantum computer requires not only a large number of qubits. Crucially, the error rates on readout and logical operations of such a system must be low enough for it to be of practical use.

The device uses the same scheme for coupling, control, and readout, according to Kelly. But instead of using a linear array design, it is scaled to a square array of 72 qubits. The guiding design principle for this device is to demonstrate similar error rates they were able to achieve on the 9-qubit hardware: 1 percent for readout, 0.1 percent for single-qubit gates, and 0.6 percent for two-qubit gates.

"Operating a device such as Bristlecone at low system error requires harmony between a full stack of technology ranging from software and control electronics to the processor itself," writes the team. "Getting this right requires careful systems engineering over several iterations."

There are other players in the game, too.

In January, Intel announced its own 49-qubit quantum chip. Last November, IBM announced that it was testing a prototype quantum processor with 50 qubits.

IBM's qubits look a lot like Google's, but Microsoft, Intel, and startups like IonQ are pursuing vastly different qubit architectures.

In China, scientists have made remarkable progress in quantum science and technology over the past year, leaping to a world-leading position in the field of quantum communications.

China has also made a breakthrough in quantum computing. Also in 2017, Chinese scientists have built world's first quantum computing machine that goes beyond the early classical -- or conventional -- computers, paving the way to the ultimate realization of quantum computing beating classical computers.

Chinese scientists are exploring three technical routes: systems based on single photons, ultra-cold atoms and superconducting circuits.

There are also many other groups around the world pursuing different approaches to achieve the "supremacy."

Editor: Jiaxin
Related News
Xinhuanet

Google takes step forward at quantum supremacy with 72-Qubit chip

Source: Xinhua 2018-03-07 07:27:57

LOS ANGELES, March 6 (Xinhua) -- Google takes a step forward in its bid to become the first company to demonstrate "quantum supremacy" with its newest 72-qubit quantum processor, which was unveiled this week at annual American Physical Society meeting here.

The chip, known as Bristlecone, is an expanded version of their previous 9-qubit linear quantum processor. Google believes that Bristlecone will be the chip that helps the internet giant to become the first company to demonstrate quantum supremacy.

"We are cautiously optimistic that quantum supremacy can be achieved with Bristlecone," Julian Kelly, a research scientist at Google's Quantum AI Lab wrote on Monday in a blog post, "and feel that learning to build and operate devices at this level of performance is an exciting challenge."

Quantum supremacy is the potential ability of quantum computing devices to solve problems that classical computers practically cannot.

"We believe the experimental demonstration of a quantum processor outperforming a supercomputer would be a watershed moment for our field, and remains one of our key objectives," said Google's blog post.

The general assumption in the industry is that it will take 49 or 50 quantum bits, or qubits, to achieve quantum supremacy, the capability of a quantum computer to outperform the largest supercomputers on certain computational tasks, a 72-qubit processor should be more than enough to achieve such a milestone.

However, a quantum computer requires not only a large number of qubits. Crucially, the error rates on readout and logical operations of such a system must be low enough for it to be of practical use.

The device uses the same scheme for coupling, control, and readout, according to Kelly. But instead of using a linear array design, it is scaled to a square array of 72 qubits. The guiding design principle for this device is to demonstrate similar error rates they were able to achieve on the 9-qubit hardware: 1 percent for readout, 0.1 percent for single-qubit gates, and 0.6 percent for two-qubit gates.

"Operating a device such as Bristlecone at low system error requires harmony between a full stack of technology ranging from software and control electronics to the processor itself," writes the team. "Getting this right requires careful systems engineering over several iterations."

There are other players in the game, too.

In January, Intel announced its own 49-qubit quantum chip. Last November, IBM announced that it was testing a prototype quantum processor with 50 qubits.

IBM's qubits look a lot like Google's, but Microsoft, Intel, and startups like IonQ are pursuing vastly different qubit architectures.

In China, scientists have made remarkable progress in quantum science and technology over the past year, leaping to a world-leading position in the field of quantum communications.

China has also made a breakthrough in quantum computing. Also in 2017, Chinese scientists have built world's first quantum computing machine that goes beyond the early classical -- or conventional -- computers, paving the way to the ultimate realization of quantum computing beating classical computers.

Chinese scientists are exploring three technical routes: systems based on single photons, ultra-cold atoms and superconducting circuits.

There are also many other groups around the world pursuing different approaches to achieve the "supremacy."

[Editor: huaxia]
010020070750000000000000011100001370208501
伊人久久大香线蕉网av| 久久99国产亚洲高清观看首页| 日本精品不卡一二三区| 国产成人8x视频一区二区| 日本岛国免费一区二区| 午夜精品视频在线看| 国产精品深夜福利免费观看| 99久久精品午夜一区二区| 55夜色66夜色国产精品| 国语国产精精品国产国语清晰对话| 人妻有码中文字幕在线不卡| 亚洲女同精品久久女同| 亚洲欧洲∨国产一区二区三区| 又湿又紧又大又爽A视频男| 国产在线白浆一区二区三区在线 | 中文字幕亚洲精品人妻| 亚洲熟女av综合网五月| 日本亚洲一级中文字幕| 中文字幕在线观看| 久久无码专区国产精品| 久爱www人成免费网站| 国产自产V一区二区三区C| 在线看国产精品三级在线| 久久综合给久久狠狠97色| 亚洲精品无码AV人在线观看国产 | 8AV国产精品爽爽ⅤA在线观看| 欧美拍拍视频免费大全| 国产仑乱无码内谢| www亚洲精品| 亚洲AV肉丝网站一区二区无码| 乱女乱妇熟女熟妇综合网| 免费无码高H视频在线观看| 亚洲综合香蕉| 亚洲黄色高清| 少妇特黄a一区二区三区| 97久久精品人人做人人爽| 久久精品女人天堂av影院| 色综合婷婷| 国产精品日日做人人爱| 国产精品一区二区三区黄| 最新中文字幕AV无码专区|