"/>

无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

U.S. Stanford researchers unveil significant advancement in skin electronics

Source: Xinhua    2018-02-20 04:05:14

SAN FRANCISCO, Feb. 19 (Xinhua) -- Researchers at U.S. Stanford University have reported the first success in developing core elements for skin-like electronics that can adhere seamlessly to human skin or within the body in highly desirable applications such as health monitoring, medical treatment, medical implants and biological studies, an author of the study told Xinhua Monday.

Jie Xu, a co-author of the study, which was published in the international science journal Nature Monday, said the research, led by Professor Zhenan Bao of Chemical Engineering and Material Science and Engineering at Stanford University, has successfully produced intrinsically stretchable transistor array and circuits.

The skin-like electronics, developed through an unprecedented scalable fabrication platform, possesses universal applicability to stretchable polymer materials, high yield and device uniformity, Bao said in an interview with Xinhua.

These intrinsically stretchable electronic elements with high device density provide charge-carrier mobility similar to that of amorphous silicon at 100 percent strain for 1,000 stretching cycles.

The technology platform and electronic elements break the major limitation in the development of skin electronics, and connect the material research and electronic research into an integrated effort towards future applications, Bao said.

She said the breakthrough can also apply for technologies that include human-machine interfaces, soft robotics and augmented reality.

Rendering such electronics soft and stretchable -- like human skin -- would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin.

The Bao-led research describes a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers, and demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimeter.

The transistor arrays constitute intrinsically stretchable skin electronics and include an active matrix for sensory arrays, as well as analogue and digital circuit elements.

The fabrication platform that has been worked out for the first time features broad material applicability without sacrificing material performance.

The intrinsically stretchable transistor array and its fabrication platform hold the core position in the interdisciplinary area of intrinsically stretchable electronics, by bridging the material research to the electronics and application development.

The latest research will have broad and long-term impacts on multiple communities, both scientifically and technologically, Xu said.

The scalability and reliability of this fabrication platform will make it easy for this technology to be transformed from research labs to industry production, she added.

Editor: Mu Xuequan
Related News
Xinhuanet

U.S. Stanford researchers unveil significant advancement in skin electronics

Source: Xinhua 2018-02-20 04:05:14

SAN FRANCISCO, Feb. 19 (Xinhua) -- Researchers at U.S. Stanford University have reported the first success in developing core elements for skin-like electronics that can adhere seamlessly to human skin or within the body in highly desirable applications such as health monitoring, medical treatment, medical implants and biological studies, an author of the study told Xinhua Monday.

Jie Xu, a co-author of the study, which was published in the international science journal Nature Monday, said the research, led by Professor Zhenan Bao of Chemical Engineering and Material Science and Engineering at Stanford University, has successfully produced intrinsically stretchable transistor array and circuits.

The skin-like electronics, developed through an unprecedented scalable fabrication platform, possesses universal applicability to stretchable polymer materials, high yield and device uniformity, Bao said in an interview with Xinhua.

These intrinsically stretchable electronic elements with high device density provide charge-carrier mobility similar to that of amorphous silicon at 100 percent strain for 1,000 stretching cycles.

The technology platform and electronic elements break the major limitation in the development of skin electronics, and connect the material research and electronic research into an integrated effort towards future applications, Bao said.

She said the breakthrough can also apply for technologies that include human-machine interfaces, soft robotics and augmented reality.

Rendering such electronics soft and stretchable -- like human skin -- would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin.

The Bao-led research describes a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers, and demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimeter.

The transistor arrays constitute intrinsically stretchable skin electronics and include an active matrix for sensory arrays, as well as analogue and digital circuit elements.

The fabrication platform that has been worked out for the first time features broad material applicability without sacrificing material performance.

The intrinsically stretchable transistor array and its fabrication platform hold the core position in the interdisciplinary area of intrinsically stretchable electronics, by bridging the material research to the electronics and application development.

The latest research will have broad and long-term impacts on multiple communities, both scientifically and technologically, Xu said.

The scalability and reliability of this fabrication platform will make it easy for this technology to be transformed from research labs to industry production, she added.

[Editor: huaxia]
010020070750000000000000011105091369859801
中文字幕日韩国产精品| 欧美成人看片一区二区三区尤物| 亚洲福利网址| 日区中文字幕一区二区| 高清国产美女一级a毛片在线| 久久国产免费观看精品3| 亚洲人亚洲人成电影网站色 | 亚洲AV永久无码精品放毛片| 久久精品国产精品亚洲20| 末发育娇小性色xxxxx| 极品少妇被啪到呻吟喷水| 国产成人午夜福利在线播放| 亚洲中文字幕在线观看| 国产露脸无套对白在线播放 | 成人免费无码毛片黄网| 久久久亚洲精品av无码| 日韩在线 | 中文| 国产91精选在线观看| 国产亚洲精品超碰| 男女啪啪免费体验区| 亚洲中文无码成人片| 国产aaaaa一级毛片| 国产裸体美女视频全黄| 国内精品久久久久影院不卡| 日本高清在线观看WWW色| 国产按头口爆吞精在线视频| 野花电影免费观看| 国产成人欧美一区二区三区在线| 人妻偷拍一区二区三区| 国产成人无码AⅤ片在线观看 | 中日韩精品视频在线观看| 亚洲一区二区三区av链接| 国产一区二区三区不卡AV| 国精品91人妻无码一区二区三区| 乱码中文字幕| 久久精品国产国语对白| 欧美日本免费一区二区三区| a级毛片毛片免费观看久| 久久精品国产字幕高潮| 久久精品国产亚洲AV麻豆长发| 污污网站18禁在线永久免费观看|